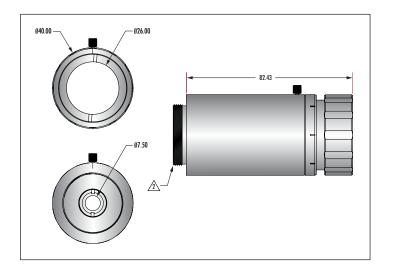
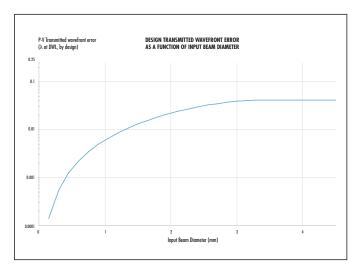
OPYRIGHT 2018 EDMUND OPTICS, INC. ALL RIGHTS RESERVEI

TECHSPEC® VEGA™ Nd:YAG LASER LINE BEAM EXPANDERS

1064nm • 7X #35-113


- $\lambda/10$ Transmitted Wavefront Error
- Fused Silica Substrate Offers Excellent Price and Performance
- Divergence Adjustment to Compensate for Input Beam Divergence
- ullet TECHSPEC $^{\otimes}$ Vega $^{\mathrm{m}}$ Broadband Beam Expanders Also Available



TECHSPEC® Vega™ Nd:YAG Laser Line Beam Expanders are designed for demanding laser applications including laser materials processing, medical, and research. These compact beam expanders are optimized at Nd:YAG wavelengths for high performance transmitted wavefront, with most designs achieving better than $\lambda/10$ transmitted wavefront error. TECHSPEC® Vega Nd:YAG Laser Line Beam Expanders easily mount with M30 x 1 threading and provide excellent value both for single unit purchases as well as volume integration.

For more cost sensitive applications that don't require divergence adjustment, see our Scorpii™ Nd:YAG Beam expanders. For applications that require sliding optics or larger input apertures, please see our Draconis™ Nd:YAG Laser Line Beam Expanders.

Design Wavelength (DWL):	1064nm
Magnification:	7X
Maximum Input Aperture:	7.5mm
Divergence Adjustable:	Rotating Optics
Maximum Output Aperture:	30mm
Length (With Threads):	88mm
Housing Outer Diameter:	40mm
Damage Threshold:	10 J/cm² @ 10ns, 20Hz, 1064nm
Transmission @ DWL:	>98.5% (nominal)
Lens Material:	Fused Silica 7980
Coating:	R _{obs} <0.25% @ 1064nm
Mounting Thread:	M30 x 1

